Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Res Ther ; 24(1): 25, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039075

RESUMO

BACKGROUND: Intervertebral disc (IVD) herniation is characterized by annulus fibrosus failure (AF) in containing the nucleus pulposus (NP). IVD herniation involves cellular and extracellular matrix (ECM) alterations that have been associated with tissue fibrosis, although still poorly investigated. METHODS: Here, fibrotic alterations in human AF were evaluated, by characterizing the herniated ECM. Human AF samples (herniated lumbar IVD (n = 39, age 24-83) and scoliosis controls (n = 6, age 15-21)) were processed for transmission electron microscopy and histological/immunohistochemical analysis of fibrotic markers. Correlations between the fibrotic markers in AF ECM and the degree of NP containment (protused, contained and uncontained) and patients' age were conducted. RESULTS: Our results demonstrate that with herniation progression, i.e. loss of NP containment, human AF presents less stained area of sulphated glycosaminoglycans and collagen I, being collagen I fibres thinner and disorganized. On the other hand, fibronectin stained area and percentage of α-smooth muscle actin+ cells increase in human AF, while matrix metalloproteinase-12 (MMP12) production and percentage of macrophages (CD68+ cells) remain constant. These structural and biochemical fibrotic alterations observed in human AF with herniation progression occur independently of the age. CONCLUSIONS: The characterization of human AF here conducted evidence the presence of fibrosis in degenerated IVD, while highlighting the importance of considering the herniation progression stage, despite the patients' age, for a better understanding of the mechanisms behind AF failure and IVD herniation.


Assuntos
Anel Fibroso , Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Anel Fibroso/patologia , Fibrose , Humanos , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia
2.
Eur Cell Mater ; 42: 1-19, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34235715

RESUMO

Mesenchymal stem/stromal cell (MSC)-based therapies have been proposed for back pain and disc degeneration, despite limited knowledge on their mechanism of action. The impact of MSCs/their secretome on annulus fibrosus (AF) cells and tissue was analysed in bovine AF organ cultures (AF-OCs) exposed to upper-physiological cyclic tensile strain (CTS, 9 %, 1 Hz, 3 h/d) and interleukin (IL)-1ß in a custom-made device. A 4 d treatment of the CTS + IL-1ß-stimulated AF-OCs with MSC secretome downregulated the expression of inflammation markers [IL-6, IL-8, prostaglandin-endoperoxide synthase 2 (PTGS2)], complement system regulators [cluster of differentiation (CD)46, CD55, CD59] and matrix metalloproteinase 1 but also of tissue inhibitors of metalloproteinases (TIMP-1, TIMP-2) and collagen type I. At the protein level, it was confirmed that IL-6, MMP-3 and collagen content was decreased in AF-OCs treated with the MSC secretome compared to the CTS + IL-1ß stimulation alone. 9 d after treatment, a biomechanical peel-force test showed that the annular adhesive strength was significantly decreased by the MSC secretome treatment. Overall, MSC secretome had a stronger impact on AF tissue than MSCs in co-culture. The secretome contributed to a decrease in the inflammatory and catabolic status of AF cells activated by CTS + IL-1ß and played a role in the regulation of the complement system. However, it also contributed to a decrease in collagen at the gene/protein level and in AF mechanical strength compared to the CTS + IL-1ß stimulation alone. Therefore, the use of MSC secretome requires further investigation regarding its influence on disc matrix properties.


Assuntos
Anel Fibroso , Células-Tronco Mesenquimais , Animais , Anel Fibroso/metabolismo , Bovinos , Células Cultivadas , Técnicas de Cultura de Órgãos , Secretoma
3.
Eur Cell Mater ; 41: 431-453, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33877647

RESUMO

Mesenchymal stem/stromal cells (MSCs) have been increasingly used in clinical trials for low-back pain (LBP) and intervertebral disc (IVD) degeneration with promising results. Their action mechanisms are not fully understood, but they reduce IVD pro-inflammatory markers in a pro-inflammatory/degenerative IVD microenvironment. In this study the therapeutic potential of the MSC secretome, as an alternative cell-free approach for treating degenerated IVDs, was examined. Human bone marrow-derived MSC secretome (MSCsec) was collected after 48 h of preconditioning in IL-1ß (10 ng/mL) and low oxygen (6 % O2), mimicking the degenerative IVD. IL-1ß-pre-conditioning of MSCs increased secretion of pro-inflammatory markers hIL-6, hIL-8, hMCP-1, etc. The therapeutic effect of MSCsec was tested in a pro-inflammatory/degenerative IVD ex vivo model. MSCsec down-regulated IVD gene expression of pro-inflammatory cytokines (bIL-6, bIL-8) and matrix degrading enzyme bMMP1, while bMMP3 and bTIMP2 were up-regulated, at 48 h. After 14 d, MSCsec-treated IVDs revealed increased aggrecan deposition, although no differences in other ECM components were observed. Protein analysis of the MSCsec-treated IVD supernatant revealed a significant increase of CXCL1, MCP-1, MIP-3α, IL-6, IL-8 and GRO α/ß/γ (related to TNF, NOD-like receptor and neutrophil chemotaxis signalling), and a decrease of IFN-γ, IL-10, IL-4, IL-5 and TNF-α (associated with T-cell receptor signalling). MSCsec-treated IVD supernatants did not promote angiogenesis and neurogenesis in vitro. Overall, MSCsec can be a safe therapeutic approach, presenting a strong immunomodulatory role in degenerated IVD while potentiating aggrecan deposition, which can open new perspectives on the use of MSCsec as a cell-based/ cell-free therapeutic approach to LBP.


Assuntos
Agrecanas/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Disco Intervertebral/metabolismo , Células-Tronco Mesenquimais/metabolismo , Secretoma/metabolismo , Adolescente , Adulto , Animais , Bovinos , Células Cultivadas , Citocinas/metabolismo , Humanos , Degeneração do Disco Intervertebral/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...